Đề khảo sát môn Toán 8 đầu năm THCS Lương Thế Vinh 2018-2019

Đề khảo sát chất lượng đầu năm học môn Toán lớp 8, trường THCS & THPT dân lập Lương Thế Vinh, thành phố Hà Nội năm học 2018-2019.

Thời gian làm bài: 90 phút

Bài 1: (2 điểm) Phân tích các đa thức sau thành nhân tử

a) 5{{x}^{2}}{{y}^{3}}-25{{x}^{3}}{{y}^{4}}+10{{x}^{3}}{{y}^{3}}

b) xy-3x-2y+6

c) {{x}^{2}}-6xy-4{{z}^{2}}+9{{y}^{2}}

Bài 2: (2 điểm) Rút gọn các biểu thức sau

a) {{\left( {x-2} \right)}^{2}}-{{\left( {2x-1} \right)}^{2}}+\left( {3x-1} \right)\left( {x-5} \right)

b) {{\left( {x-3} \right)}^{3}}-\left( {x+3} \right)\left( {{{x}^{2}}-3x+9} \right)+\left( {3x-1} \right)\left( {3x+1} \right)

Bài 3: (2 điểm) Tìm x

a) {{\left( {x+3} \right)}^{2}}-x.\left( {x+5} \right)=2

b) {{\left( {5x-2} \right)}^{2}}+\left( {2-5x} \right)\left( {3x+1} \right)=0

c) {{x}^{3}}+27+\left( {x+3} \right)\left( {x-9} \right)=0

Bài 4: (3,5 điểm)

Cho tam giác nhọn ABCAM là đường trung tuyến. Trên cạnh AC lấy hai điểm DE sao cho AD = DE = EC, AM cắt BD tại I.

a) Chứng minh: Tứ giác BDEM là hình thang

b) Chứng minh: I là trung điểm của AM.

c) Chứng minh: BI = 3DI

d) Trên tia đối của tia CB lấy hai điểm PQ sao cho CP = PQ = CM.

Chứng minh: ME, AP, DQ đồng quy tại một điểm

Bài 5: (0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức sau:

A=2{{x}^{2}}+10{{y}^{2}}-6xy-6x-2y+16

Đề thi Toán lớp 8 - Tags: , ,