Bất đẳng thức Bunhiacopxki và các kỹ thuật thường dùng
- Lý thuyết cơ bản chứng minh bất đẳng thức
- Lời khuyên bổ ích khi học bất đẳng thức
- Phương pháp biến đổi tương đương chứng minh bất đẳng thức
- Ứng dụng bất đẳng thức để giải phương trình
- Một số bất đẳng thức phụ hay dùng
- Chọn điểm rơi trong bất đẳng thức như nào?
- Chứng minh bất đẳng thức bằng phương pháp đổi biến
- Bất đẳng thức Schur với t=1. Các kết quả hay sử dụng
- Sử dụng biểu thức phụ để tìm cực trị của biểu thức
- Chứng minh bất đẳng thức bằng phương pháp ghép cặp
- Ứng dụng Cosi ngược dấu chứng minh bất đẳng thức
- Cách chứng minh bất đẳng thức bằng vectơ
- Bất đẳng thức Côsi (Cauchy) và bài tập áp dụng
- Bất đẳng thức Bunhiacopxki và các kỹ thuật thường dùng
- Tuyển tập một số bài toán bất đẳng thức trong kì thi chuyên Toán 2020
- Bất đẳng thức Svac-xơ (bất đẳng thức cộng mẫu số)
Bất đẳng thức Bunhiacopxki được sử dụng rất nhiều trong các bài toán chứng minh bất đẳng thức ở bậc trung học cơ sở.
Ở bài viết này Gia sư Tiến Bộ chia sẻ các dạng bất đẳng thức Bunhiacopxki cơ bản hay dùng và đặc biệt.
1) Các dạng bất đẳng thức Bunhiacopxki cơ bản:
Cho hai dãy số tùy ý
và . Khi đó ta có:Dạng 1:
Dạng 2:
– Dấu đẳng thức xảy ra ở dạng 1 và dạng 2 là:
Dạng 3:
– Dấu đẳng thức xảy ra ở dạng 3 là:
Dạng 4: Cho hai dãy số tùy ý và với
Khi đó ta có:
– Dấu đẳng thức xảy ra ở dạng 4 là:
Trong các dạng trên thì bất đẳng thức dạng 1, dạng 2, dạng 3 gọi là các bất đẳng thức Bunhiacopxki dạng cơ bản và bất đẳng thức dạng 4 còn được gọi là bất đẳng thức Bunhiacopxki dạng phân thức.
2) Các dạng bất đẳng thức Bunhiacopxki đặc biệt:
Đẳng thức xảy ra khi | Đẳng thức xảy ra khi |
3) Một số kỹ thuật sử dụng bất đẳng thức Bunhiacopxki
Các kỹ thuật thường dùng trong bài toán bất đẳng thức áp dụng BĐT Bunhiacopxki là:
– Kỹ thuật chọn điểm rơi trong bất đẳng thức Bunhiacopxki
– Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng cơ bản
– Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng phân thức
– Kỹ thuật thêm bớt khi sử dụng bất đẳng thức Bunhiacopxki
– Kỹ thuật đổi biến trong bất đẳng thức Bunhiacopxki
Kiến thức THCS - Tags: bất đẳng thức, bất đẳng thức bunhiacopxki, bunhiacopxkiBất đẳng thức Côsi (Cauchy) và bài tập áp dụng
Chứng minh bất đẳng thức bằng phương pháp ghép cặp
Cách chứng minh hai góc bằng nhau lớp 6, 7, 8, 9
Đề thi giáo viên THCS môn Toán tỉnh Bình Định 2019
Cách chứng minh 3 đường thẳng đồng quy
6 kỹ năng giải bài toán bằng cách lập PT, hệ PT
Đề thi GVDG môn Toán THCS – Vòng lý thuyết huyện Thuận Thành 2018-2019